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Abstract

The temporal instability of a particle-laden jet was investigated numerically which took into consideration the para-
metric effects of jet parameter, B, jet Reynolds number, Rej, particle mass loading, Z and Stokes number, St. The linear
stability theory was used to derive the instability equations of a viscous particle-laden jet flow. The single-phase instability
of a top-hat jet was then calculated and compared with the available analytical theories. The numerical results agree well
with the analytical results for both the axisymmetric (n = 0) and first azimuthal (n = 1) modes. The results show that the
first azimuthal mode disturbance is usually more unstable than that of the axisymmetric mode. But the axisymmetric mode
disturbance can be more unstable when Z is high enough (i.e., Z P 0.1). The higher B and Rej are, the more unstable the
particle-laden jet will be. The existence of particles enhances the flow stability. With the increasing of Z, the jet flow will
grow more stable. The inviscid single-phase jet is the most unstable. The wave amplification, ci first decreases with the
increasing of St and then increases afterwards. There exist certain values of St, at which the jet is the most stable.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerous engineering applications and processes of a two-phase turbulent jet for transporting particles
can be identified (i.e., air cleaner systems, ejector scrubbers, air-spray systems, vehicular exhaust jet particle
distributions and combustion exhaust systems, etc.). In many of these processes, the distribution of the dis-
persed particle is a controlling factor in the efficiency and the stability of the processes (Chan et al.,
2005a,b, 2006; Lin et al., 2007). Since the stability of particle-laden jet flow is different from that of the single
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phase jet flow (Saffman, 1962; Batchelor and Gill, 1962), it plays a key role in the numerous engineering appli-
cations and processes.

Indeed, Batchelor and Gill (1962) derived the coupled ordinary differential equations for the disturbance
motion of a single-phase jet and proved the existence of amplified disturbance for any value of the azimuthal
wavenumber for a top-hat velocity profile. Lessen and Singh (1973) studied both temporal and spatial insta-
bility of axisymmetric free shear layers and concluded that the first azimuthal mode is the most unstable. Mol-
lendorf and Gebhart (1973) solved numerically the fully viscous hydrodynamic stability equations for a
laminar vertical round jet for both symmetric and asymmetric disturbances using the proper boundary-layer
base-flow velocity profile. Michalke (1984) reviewed the theoretical results on the instability of axisymmetric
jets due to the effects of shear layer thickness, Mach number, temperature ratio and external flow velocity. Lin
and Lian (1989) studied the effect of the ambient gas density on the onset of absolute instability in a viscous
liquid jet. They found that the critical Weber number can be determined as a function of Reynolds number
and the density ratio of gas to liquid. Shen and Li (1996) carried out a linear analysis for the temporal insta-
bility of an annular viscous liquid jet moving in an inviscid gas medium. They found that the curvature effects
in general increase the disturbance growth rate and an ambient gas medium always enhances the annular jet
instability. Recently, Cramer et al. (2002) have studied experimentally the breakup of a Newtonian liquid jet
into droplets injected horizontally into another flowing immiscible Newtonian fluid under creeping flow con-
ditions. They have found that different breakup mechanisms take place in different flow regions. Funada et al.
(2004) have analyzed the temporal and convective/absolute instability of a liquid jet into a gas or another
liquid medium using viscous potential flow. Their findings have showed that there are wavenumbers for which
the liquid jet is temporally unstable for their studied parameters. Chauhan et al. (2006) have examined the
emergence of the absolute instability from the convectively unstable states of an inviscid compound jet. They
have found that in addition to being convectively unstable at all Weber numbers, the inviscid compound jet is
also absolutely unstable when below its critical velocity.

On the other hand, the instability studies of a particle-laden jet have also been developed. Neglecting the
gas viscosity and the fluctuation of suspension velocity, Yang et al. (1990) studied the spatial stability of gas-
particle two-phase mixing layer. They found that the existence of small particles enhances the flow stability.
Sykes and Lyell (1994) investigated the spatial stability of an inviscid two-phase circular jet and also found
that the particles have a stabilizing effect. The spatial growth rate was found to decrease for both the axisym-
metric and first azimuthal modes. Parthasarathy (1995) studied both the spatial and temporal stabilities of a
circular particle-laden jet. The temporal stability analysis of a particle-laden top-hat jet showed that the pres-
ence of particles decreases the wave amplification but increases the wave velocity. However, the increasing of
particle mass loading decreases both wave amplification and velocity. The spatial stability analysis showed
that the presence of particles decreases the wave amplification rate at all frequencies. However, only top-
hat jet profile was investigated in the temporal instability. Recently, Lin and Zhou (2000) have investigated
the stability of a moving jet containing dense suspended solid particles and found that the particles affect
the instability of the flow field significantly. DeSpirito and Wang (2001) have studied the temporal stability
of a particle-laden jet using the direct numerical simulation approach. They have demonstrated that the addi-
tion of particles can destabilize the flow at a small particle Stokes number, while the stabilizing effect prevails
for an intermediate to a large particle Stokes number. The addition of particles increases the wave velocity at
high wavenumber but decreases the wave velocity at low wavenumber. For a given particle mass loading and
wavenumber, there is an intermediate particle Stokes number that corresponds to a maximum stability of
jet flow. They have showed that this Stokes number is on the order of 1 and depends weakly on the wave-
number. But they have only considered the axisymmetric azimuthal mode disturbance. In fact, the first azi-
muthal mode disturbance is more unstable. Lakehal and Narayanan (2003) have studied the initial temporal
evolution of mixing layers for different Stokes numbers. Their results could also apply for the instability of jet
flow.

However, there is no detailed investigation on different azimuthal modes in the instability of a particle-
laden jet which takes into consideration the different parametric effects available in the literature. In the pres-
ent study, it is intended to investigate the parametric effects of jet parameter, B, jet Reynolds number, Rej,
particle mass loading, Z, particle Stokes number, St, disturbance wavenumber, b and azimuthal mode, n

on the temporal stability of a particle-laden jet.
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2. Stability equations and boundary conditions

2.1. Stability equations

The volume fraction of particulate phase in an axisymmetric gas jet shear layer containing solid particles is
very low. Hence, the effects of particle concentrations on continuous phase viscosity are small, as described in
DeSpirito and Wang (2001). The diameter sizes of particles considered are from about 1 to 100 lm. These
studied diameter sizes of particles are much smaller than any characteristic length scales of the gas flow.
The particle density is much higher than that of the gas, so the bulk particle mass loading of the solid phase
is on the order of 1. Because of its large density ratio, the effects of virtual mass, Basset history forces, etc., can
be neglected. Since the particle Reynolds numbers are in the Stokes flow region, a linear Stokes drag is
assumed (Saffman, 1962; Parthasarathy, 1995 and DeSpirito and Wang, 2001). The governing equations
for the carrier gas (subscript f) and the solid phase (subscript p) of an axisymmetric jet are:
ou

ot
þ u � ru ¼ � 1

qf

rp þ l
qf

r2u� 3plNd
qf

ðu� vÞ; ð1Þ

r � u ¼ 0; ð2Þ
ov

ot
þ v � rv ¼ 18l

qpd2
ðu� vÞ; ð3Þ

oa
ot
þr � ðavÞ ¼ 0; ð4Þ
where u = (ur,uh,uz) is the gas velocity; v = (vr,vh,vz) is the particle velocity; p is the gas pressure; qf is the gas
density; qp is the particle density. The momentum coupling is described by the term 3plNd(u � v), where N is
the particle number density; d is the particle diameter; l and m are the gas dynamic and kinematic viscosity,
respectively (Saffman, 1962). The local particle volume fraction, a is related to the number density as
a = Npd3/6.

The governing equations, Eqs. (1)–(4) can be non-dimensionalized using the gas velocity at the centerline of
the jet, U0, the radius of the jet core, r0, and an average particle volume fraction, a0. A linear stability analysis
is performed by separating the variables into the mean and perturbation components as:
u ¼ U þ u0; v ¼ V þ v0; p ¼ P þ p0; a ¼ Aþ a0; ð5Þ
where the primed ( 0) variables are the perturbation components; U and V are the steady mean velocity of gas
and particle, respectively; P is the steady mean pressure; A is the normalized average particle volume fraction
and is equal to 1. For the sufficiently fine particles, the velocity of sedimentation will be small compared with a
characteristic velocity of the flow and hence it can be neglected (Saffman, 1962). The inertial force is small
compared to the viscosity force. The particle moves along the flow streamline. The mean velocity of particles
can be considered as the behavior of gas flow as used in Batchelor and Gill (1962), Saffman (1962) and DeSpi-
rito and Wang (2001). In the jet flow, the jet velocity can be considered as a parallel flow and thus
U = V = {0,0,U}. Eq. (5) is substituted into nondimensional forms of Eqs. (1)–(4). When the mean flow terms
are subtracted and the nonlinear terms of the perturbation are neglected, the linear stability equations can then
be expressed as:
ou0

ot
þ ðu0 � rÞU þ ðU � rÞu0 ¼ �rp0 þ 1

Rej

r2u0 � Z
St
ðu0 � v0Þ; ð6Þ
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þ ðv � rÞU þ ðU � rÞv ¼ 1

St
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oa0

ot
þr � ðv0 þ a0UÞ ¼ 0: ð9Þ
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The jet flow Reynolds number, Rej is defined as r0U0/m. In the flow momentum coupling term, Z is the aver-
age particle mass loading (Z = a0qp/qf); the particle Stokes number, St is the ratio of the particle response time
(sp = qpd2/18mqf) to flow characteristic time (sf = r0/U0).

The perturbations are described as the normal mode of a traveling wave form:
u0r
iurðrÞ

¼ u0h
uhðrÞ

¼ u0z
uzðrÞ

¼ v0r
ivrðrÞ

¼ v0h
vhðrÞ

¼ v0z
vzðrÞ

¼ p0

pðrÞ ¼ expðinhþ ibðx� ctÞÞ; ð10Þ
where u(r), v(r) and p(r) are the amplitudes of the corresponding disturbances; n is the azimuthal mode of dis-
turbance; b is the axial wavenumber of disturbance; c is the wave amplification factor; ur is taken to be directly
proportional to iur(r) due to the phase of ur differs by p/2 from that of uh and uz as well as vr in Eq. (7) (Batch-
elor and Gill, 1962; Saffman, 1962).

In the present study, the temporal instability of a particle-laden jet is considered. Hence, b is real quantity
while c = cr + ici is generally complex. The disturbances will grow with time if ci > 0 and will decay if ci < 0 in
Eq. (10). The neutral disturbances are then characterized by ci = 0. Substituting Eq. (10) into Eqs. (6)–(9), they
can be expressed as:
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where the differential operations D and D* are defined as:
DðÞ ¼ d

dr
ðÞ;D�ðÞ ¼

d

dr
ðÞ þ 1

r
ðÞ: ð17Þ
The variable a only appears in Eq. (16) and it can be decoupled with other equations, Eqs. (11)–(15). Hence,
Eqs. (11)–(15) form a closed eigenvalue problem together with the appropriate boundary conditions in Section
2.2.

2.2. Boundary conditions

The boundary conditions are set for different azimuthal modes. The following boundary conditions of dis-
turbance were first derived by Batchelor and Gill (1962) and then adopted by many researchers (Lessen and
Singh, 1973; Mollendorf and Gebhart, 1973; Morris, 1976; Michalke and Hermann, 1982). The boundary con-
ditions of particle disturbance follow that of the gas phase. Hence, the boundary conditions used for the pres-
ent study are:
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n ¼ 0:

urð0Þ ¼ uhð0Þ ¼ Duzð0Þ ¼ Dpð0Þ ¼ 0; ð18Þ
urð1Þ ¼ uhð1Þ ¼ uzð1Þ ¼ pð1Þ ¼ 0:

n ¼ 1:

urð0Þ þ uhð0Þ ¼ uzð0Þ ¼ pð0Þ ¼ 0; ð19Þ
urð1Þ ¼ uhð1Þ ¼ uzð1Þ ¼ pð1Þ ¼ 0:
3. Jet velocity profile

The normalized jet velocity profile, U has been widely used for the study of jet instability (Morris, 1976;
Michalke, 1984; Sykes and Lyell, 1994 and Parthasarathy, 1995) as follows:
U ¼ 1

2
1� tanh

B
4

r � 1

r

� �� �� �
; ð20Þ
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Fig. 1. Normalized velocity profiles for different jet parameter, B and top-hat jet.
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Fig. 2. Wave amplification, ci of a single jet as a function of wavenumber, b for different domain size, R.
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where B is the jet parameter, B ¼ R
h where R is the middle of the jet shear layer and h is the momentum bound-

ary layer thickness of the jet shear layer, h ¼
R1

0
u�u1
uj�u1

h i
1� u�u1

uj�u1

h i
dr, in which uj is the jet core velocity, u1 is

the external flow velocity. It is used to characterize jet velocity profiles for different axial locations. The smaller
B values, the farther downstream the locations. The normalized jet velocity profiles for different B values and
top-hat jet are shown in Fig. 1.

Although the outer boundary of the jet is located at infinity (r =1), it should be truncated at some finite
values in the present numerical simulation. This finite domain size is denoted by r ¼ R. The wave amplifica-
tions, ci of a single jet for R ranging from 2 to 10 are shown in Fig. 2. It shows that the wave amplification of
jet at R ¼ 6 is almost the same trend as that of R ¼ 10. It can also be concluded that R ¼ 6 is far away enough
for the outer boundary of an axisymmetric jet flow. Hence, the outer boundary is defined at R ¼ 6 in the pres-
ent study.
4. Results and discussions

4.1. Top-hat jet instability

The instability of a single-phase top-hat jet was solved completely by Batchelor and Gill (1962). The wave
velocity, cr and wave amplification, ci for a growing disturbance are:
Fig
cr ¼
1

1þ LnðbÞ
; ci ¼

L
1
2
nðbÞ

1þ LnðbÞ
; ð21Þ
where LnðbÞ ¼ � KnðbÞI 0nðbÞ
InðbÞK 0nðbÞ

, and In and Kn stand for the modified Bessel functions of the first and second kinds.
The values of cr and ci as the functions of wavenumber, b for different azimuthal modes, n are shown in Fig. 3.
The present numerical results are compared with the analytical results of Batchelor and Gill (1962) in order to
validate the present developed numerical codes for solving eigenvalue problems. Excellent agreement on both
the axisymmetric and first azimuthal modes is obtained.
4.2. Jet parameter effect

The effect of jet parameter, B on its instability was first investigated. The variation of wave amplification, ci

with wavenumber, b for different B and azimuthal modes, n are shown in Fig. 4. It shows that the larger B is,
the more unstable jet will be, which is true for both n = 0 and 1 modes. When B is higher, the normalized jet
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. 3. Comparison of numerical results and Batchelor and Gill’s theory (1962) for a top-hat jet for different azimuthal modes.
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Fig. 4. Variation of wave amplification, ci with wavenumber, b for different jet parameters, B: (a) n = 0; (b) n = 1 where Rej = 1000,
Z = 0.01 and St = 1.
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velocity changes more sharply from 1 of the jet core to 0 of the ambient velocity, as shown in Fig. 1. It causes
the larger shear force and leads the jet to be more unstable.

Fig. 4a and b show that the first azimuthal disturbance (n = 1) is more unstable than the axisymmetric azi-
muthal disturbance (n = 0), which can also be found in Fig. 3 for the top-hat jet. Similar findings were also
reported by the researchers for the stability of a single-phase jet (Lessen and Singh, 1973; Michalke, 1984).
With the increasing of b, ci increases first and then decreases accordingly. There exists the highest ci at certain
b value (i.e., b = 0.7 when B = 5). At this b value, the particle-laden jet is the most unstable. In general, the
corresponding b to the highest ci increases in respect to B, which is true for both n = 0 and 1 modes. When
n = 0, the corresponding b to the highest ci for B from 2.5 to 10 is about 0.6–1, which is higher than that
of n = 1 for about 0.4–0.6.

The variation of ci and cr in respect to B for both axisymmetric and first azimuthal modes is shown in Fig. 5.
The ci increases with the increasing of B. Similar numerical results were found in DeSpirito and Wang (2001).
The first azimuthal mode is more unstable than the axisymmetric mode. The cr decreases with B first and then
tends to have different constant trends for both n = 0 and 1 modes.
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Fig. 5. Behavior of wave amplification, ci and velocity, cr with jet parameter, B for different azimuthal modes, n, where Rej = 1000,
Z = 0.01, St = 1 and b = 1.
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4.3. Jet Reynolds number effect

The variation of wave amplification, ci with the wavenumber, b for different jet Reynolds numbers
(Rej = 100, 500 and 2000) and inviscid case for different azimuthal modes, n is shown in Fig. 6. It shows that
for both n = 0 and 1 modes, the higher Rej is, the more unstable the jet will be. The ci gradually approaches to
the inviscid solution as Rej increases. The instable region of b also increases with the increasing of Rej. Com-
paring with Fig. 6a and b, the first azimuthal mode is more unstable than the axisymmetric azimuthal mode.
The corresponding b to the highest ci decreases with the increasing of Rej, which is true for both n = 0 and 1
modes. When n = 0, the corresponding b to the highest ci for Rej from 100 to 2000 is about 0.6–0.9, which is
larger than that of n = 1 for 0.4–0.7.

The effect of Rej on the stability of a single-phase jet and a particle-laden jet for different azimuthal modes, n

is shown in Fig. 7. Both types of jets grow unstable and approach the inviscid solution as Rej increases. The
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Fig. 6. Wave amplification, ci as a function of wavenumber, b for different jet Reynolds numbers, Rej: (a) n = 0; (b) n = 1 where B = 5,
Z = 0.01 and St = 1.
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particle-laden jet is more stable than the single-phase jet for both n = 0 and 1 modes, which will be discussed in
Section 4.4.

4.4. Particle mass loading effect

The variation of wave amplification, ci with wavenumber, b for different particle mass loadings, Z and azi-
muthal modes, n are shown in Fig. 8. It shows that the higher Z is, the more stable the jet will be, which is true
for both n = 0 and 1 modes. The existence of particles assists the stability of jet flow. It demonstrates that the
single-phase jet is the most unstable. For the studied jet parameter, B and jet Reynolds number, Rej, the par-
ticle-laden jet is always stable when Z is high enough (i.e., Z > 1). When Z is small (i.e., Z = 0.02), the first
azimuthal mode is more unstable than the axisymmetric azimuthal mode. On the other hand, when Z is higher
(i.e., Z P 0.1), the axisymmetric azimuthal mode can be more unstable than the first azimuthal mode, which
can be found in Figs. 8 and 9.
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Fig. 8. Wave amplification, ci as a function of wavenumber, b for different particle mass loadings, Z: (a) n = 0; (b) n = 1 where B = 5,
Rej = 1000, and St = 1.
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Fig. 9. Variation of wave amplification, ci with particle mass loading, Z for different azimuthal modes, n, where B = 5, Rej = 1000, St = 1
and b = 0.7.
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The corresponding b to the maximum ci changes significantly for the particle mass loading for n = 0 and 1
modes as shown in Fig. 8. When n = 0, the corresponding b decreases with the increasing of Z, from 0.8 to 0.5,
while for n = 1, the corresponding b increases with the increasing of Z from 0.4 to 0.8.

The effect of Z on the instability of jet for different azimuthal modes, n is shown in Fig. 9. The ci decreases
with the increasing of Z. The effect is much more obvious for the first azimuthal mode n = 1. At small Z, the
n = 1 is more unstable than the n = 0, but when Z is higher than 0.1, this phenomena will be vice versa.

4.5. Particle Stokes number effect

The effect of particle Stokes number, St on the stability of a particle-laden jet for different jet Reynolds
numbers, Rej is shown in Fig. 10. For the studied Rej, with the increasing of St from 0.01 to 100, ci decreases
first and then increases accordingly. The minimum ci appears when St is at the order of 1, which also agrees
well with the findings of DeSpirito and Wang (2001). When St > 1, almost the same ci is found for the studied
Rej. The ci tends to be at inviscid flow situation when Rej is higher than 2000, as shown in Fig. 7. However,
different phenomenon are found when St < 1.
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Fig. 10. Variation of wave amplification, ci with particle Stokes number, St for different jet Reynolds numbers, Rej, where B = 5, n = 1,
Z = 0.5 and b = 0.8.
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Fig. 11. Variation of wave amplification, ci with particle Stokes number, St for different particle mass loadings, Z where B = 5, n = 1,
Rej = 5000 and b = 0.8.
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The effect of St on the stability of a particle-laden jet for different Z is shown in Fig. 11. For the studied Z,
with the increase of St from 0.01 to 100, ci decreases first and then increases accordingly. The corresponding St

to the minimum ci is different for different Z. When Z = 0.5, the corresponding St is about 1, but when
Z = 0.1, the corresponding St is about 0.1.

5. Conclusions

The temporal instability of a particle-laden jet was investigated numerically which took into consideration
the parametric effects of jet parameter, B, jet Reynolds number, Rej, particle mass loading, Z and Stokes num-
ber, St. The instability equations of a viscous particle-laden jet flow were first derived using the linear stability
theory. The instability of a single phase top-hat jet was then calculated and compared with the analytical the-
ories. The numerical results agree well with the analytical results for both the axisymmetric (n = 0) and first
azimuthal (n = 1) modes. The axisymmetric and first azimuthal mode disturbances have the same tendency for
different studied cases. The results show that the first azimuthal mode disturbance is usually more unstable
than the axisymmetric mode disturbance, which is usually true for studied parametric effects. If Z is high
enough (i.e., Z P 0.1), then the axisymmetric mode is more unstable than the first azimuthal mode. With
the increasing of wavenumber, b, the wave amplification, ci first increases and then decreases accordingly.
There exists a maximum ci which corresponds to b at about 0.5–1. The corresponding b increases with increas-
ing of B but decreases with increasing of Re for both n = 0 and 1 modes. But the corresponding b decreases
with the increasing of Z for n = 0, while the corresponding b increases with the increasing of Z for n = 1. The
higher B and Rej are, the more unstable the particle-laden jet will be. With the increasing of Z, the jet flow will
grow more stable. The inviscid single-phase jet is the most unstable. The wave amplification, ci first decreases
with the increasing of St and then increases afterwards. There exist certain values of St, at which the jet is the
most stable.
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